

Professor YANG Hong-xing

Renewable Energy Research Group (RERG)
The Hong Kong Polytechnic University

DSD R&D Forum 2012 Wastewater Treatment Session 28 Nov 2012

Introduction 简介

- Biogas from STW: A renewable energy resource
- Biogas utilization: Synergy of energy and environment
- 生物气:可再生的能源资源
- 生物气利用: 实现能源与环境的协同

Current Biogas utilization ways 目前生物气利用途径

- Hot water generation for sludge digestion
- Power generation
- Combined heating and power
- Purification to pipeline quality gas

- 生产热水用于污泥细菌分解
- 电力生产
- 热电联产:同时制取 电力和热水
- 制取城市管道煤气, 通过城市管网供气

Problems of biogas utilization 生物气利用存在的问题

- Low utilization efficiency
- Unbalance in thermal energy utilization
- In summer: surplus of thermal energy
- In winter: shortage of thermal energy
- 能源利用效率低
- 热能利用不匹配
- > 夏季: 热能用不完
- >冬季: 热能不够用

CCHP: An innovative way 冷热电联产: 一种新的利用途径

- Combined cooling, heating and power (CCHP): simultaneous provision of chilled water, hot water and electricity from same energy source
- 冷热电联产 (CCHP): 利用同一种能量源同时为用户提供空调、供热和供电等多种服务

Principle diagram of energy utilization 冷热电联产流程。

Schematic diagram of CCHP 冷热电联产流程

GE's Jenbacher gas engine

GE's Jenbacher gas engines range in power from 0.25 to 4 MW and run on either natural gas or a variety of other gases (e.g., biogas, landfill gas, coal mine gas, sewage gas, combustible industrial waste gases).

Advantages of CCHP 冷热电联产的优点

- High energy utilization efficiency
- Cascaded utilization of energy resource
- High temperature: power generation
- Middle temperature: refrigeration
- Low temperature: hot water production
- 能源利用效率高
- 能源梯级利用
- 》高温段:发电;中温段:制冷; 低温段:供热

Absorption chiller 吸收式制冷

- Thermally activated refrigeration
- Space air conditioning using waste heat
- Environmentally friendly: no CFC or HCFC
- 热能驱动的制冷
- 利用废热进行空调
- 环保: 不使用CFC或HCFC

Principle of absorption chiller 吸收式制冷机的原理

Principle of absorption chiller 吸收式制冷机的原理

Proposed CCHP with Solar Collectors for biogas utilization

Main measures for increasing efficiency 提高效率的主要措施

- In summer (surplus):
 - Exhaust gas and jacket hot water will be used by absorption chiller for chilled water
 - Hot water after chiller will be used for heating sludge digestion tank
 - 夏季(热过剩):
 - 利用高温排气和缸套热水驱动吸收式制冷机制取冷冻水
 - 经过吸收制冷机收后的热水用于加热污泥

- In winter (shortage):
- Jacket hot water directly for heating sludge
- Exhaust gas for producing hot water for heating sludge by absorption chiller

- 冬季(热不足):
- ✓ 缸套热水直接用 于污泥加热
- ✓ 吸收式制冷机利 用高温排气制取 热水,用于污泥 加热

Main measures for increasing efficiency 提高效率的主要措施

- In winter:
- Solar collectors
 generating hot water
 for heating sludge
- Biogas for producing hot water for heating sludge by absorption chiller (only when needed)

■ 冬季:

- ✓ 太阳能热水器生产热水,用于污泥加热
- ✓ 吸收式制冷机利 用生物气制取热 水,用于污泥加 热(仅当需要时采 用)

Advantages of proposed scenario 方案的优点

- Improve the energy utilization efficiency
- Provide multi-services simultaneously
- Avoid the requirement for operating boiler
- More accurate control of sludge temperature
- 提高生物气能源利用效率
- 同时提供多种服务(冷、热、电)
- 不需要使用锅炉
- 更加准确地控制污泥温度

Disadvantages of proposed scenario 方案的缺点

- More equipment
- More complicated system control
- Heat rejection for cooling water is needed
- 需要更多的设备
- 系统控制更加复杂
- 需要冷却水和冷却水系统

A case study for Shek Wu Hui Sewage Treatment Work

Biogas:

11000-13000 m³/day;

Generator:

500GF-NK1

500kW*2;

LiBr chiller:

850kW

机组型号	500GF-NK1
燃气发动机型号	G12V190ZLDZ-2
发电机型号	1FC6 456-6LA42
控制屏型号	KW500A-Z2
额定功率(kW)	500
额定转速(r/min)	1000
额定电压(V)	400
额定电流(A)	902
额定频率(Hz)	50
额定因数 (cosΦ)	0.8 (滯后)
燃气热耗率(MJ/kWh)	≤10
调压方式	自动
励磁方式	无刷
稳定调速率(%)	≤5
相数与接法	三相四线制
点火方式	电子点火 MIC-500
控制系统	WOODWARD-UMT1
发动机热效率(%)	≥36
计算机管理系统 (选购)	GPS-CMC-2000
排气温度 (℃)	≤550
机油消耗率(g/kWh)	≤1.2
工作方式	常年工作方式(SI工作制)
启动方式	直流 24V 电启动
操纵方式	远距离电控
冷却方式	开式双温强制水冷
机组大修期 (h)	≥30000
外形尺寸	5120×2040×2780
机组质量(kg)	12500

Selected generator and chiller

Specifications of the chiller

Refrigeration capacity: 850kW

Chilled water: 12 / 7 °C

Chilled water flow rate: 146 m³/h

Cooling water: 32 / 37 °C

Cooling water flow rate: 288 m³/h

Dimensions: $4.5 \text{m} \times 3.2 \text{m} \times 3.5 \text{m}$

Weight: 15 tons

Solar added tri-generation system

The weather data of Hong Kong (1981-2010)

Simulation results

54

Energy efficiency of heat recovery in biogas-chiller system (total input of thermal energy: 540kW)

Heat	Energy	Rate
exchanger	recovery	
Cylinder / lubrication oil	170.1	31.5%
Exhaust gas	121.5	22.5%
Total	291.6	54.0%

Annual performance

- > The designed power generation rate is 1000kW and annual power generation is 8760 MWh.
- > The designed capacity of the LiBr chiller is 850kW and annual cooling capacity is 7446 MWh.
- > Power generation efficiency is 34%, heat recovery efficiency is 54% and the total energy efficiency is 88%.

	Average
Constituent Gas	concentration (v/v)
Methane (CH ₄)	50%
Carbon Dioxide (CO ₂)	45%
Nitrogen (N ₂)	5%
Oxygen (O_2)	<1%
Hydrogen Sulfide (H ₂ S)	21 ppmv
Halides	132 ppmv
Nonmethane Organic Compounds	
(NMOCs)	2700 ppmv

LFG tri-generation scheme

Simulation for five cases:

- Case 1: LFG is directly released into atmosphere;
- Case 2: LFG is collected and flared;
- Case 3: Part of collected LFG is used for electricity generation and the remainder is flared;
- Case 4: All the collected LFG is fed into a power engine for electricity generation but no waste heat is recovered;
- Case 5: All the collected LFG is fed into a power enginebased tri-generation system for generating electricity, chilled water and hot water.

Simulation results

The net present values of Cases 4 and 5

- A sewage treatment plant in Spain has integrated an absorption cooling system with micro gas turbine (MGT) tri-generation systems driven by biogas which is produced by itself.
- The MGT is fuelled with biogas and its waste heat is used to drive an absorption chiller. The chilled water is used to condense water in the biogas pre-treatment process before its combustion in the MGT and to cool the combustion air used in the MGT.

Source: Bruno, Ortega-López, Coronas. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant. Applied Energy 86 (2009) 837–847.

Case study for an existing sewage treatment plant

- It is a medium-sized plant that treats about 6 million m3 of water every year, with 3200 tons/year of solids in suspension.
- The plant's nominal capacity is 25,000 m3/day, with an average treated water flow rate of 17,000 m3/day. The plant produces 220 t/day of sludge with a dryness of 25%.

Economic performance analysis and payback period(PBP)

Table 10Economic performance analysis using an electricity/natural gas ratio cost of 5.0

	Natural gas cost	Electricity cost	Operation and maintenance cost	Investment cost	PBP
	€/year	€/year	€/year	ϵ	years
Case 0	11834	229602	3818	9600	
Case 1-A	39730	147175	10622	291000	5.9
Case 1-B	42665	144910	10622	297100	6.1
Case 1-Ca	53608	144910	10622	298000	8.0
Case 1-Cb	47091	144910	10622	298800	6.8
Case 1-Da	52363	144910	10622	312600	8.1
Case 1-Db	43984	144910	10622	312600	6.6
Case 1-Dc	43095	144910	10622	312600	6.5
Case 2-A	69891	51302	20148	484100	4.6
Case 2-B	78823	45055	20148	492100	4.8
Case 2-C	77183	48163	20148	490600	4.8
Case 2-D	78745	45348	20148	506800	4.9

➤ Because of the high price of electricity, cases 2, which include between three and five MGTs running with natural gas, are the best options in terms of payback period.

Source: Bruno, Ortega-López, Coronas. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant. Applied Energy 86 (2009) 837–847.

Conclusions

- The tri-generation technology can recover much more energy compared with electrical power generation scheme only system for using biogas from wastewater treatment and LFG;
- Chilled water can be supplied to the nearby commercial buildings;
- Surplus hot water can be used in the plant and supplied to nearby hotels;
- The system is more economical and reasonable if solar thermal energy is used;

Thank you!